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Introduction 
The small wavelength elastic vibration often termed as 

ultrasonic are of widespread use today. It found wide 
implementation in non-destructive testing, geometric 
measurements, vibroageing processes. The ultrasonic 
measurements have won the strong position providing the 
reasonable amounts of information at comparatively low 
price in comparison with other alternative methods. By 
virtue, the ultrasonic measurements in solids and 
composite bodies of complicated geometrical shape often 
require to develop the case oriented equipment and image 
processing software basing upon the knowledge of the 
physical essence of the wave propagation in the 
environment under investigation. As powerful tools for 
modeling of the ultrasonic measurement process the finite 
element method (FEM) and/or boundary integral equation 
method (BIEM) can be used. The modeling of the 
ultrasonic wave propagation can be considered as the 
general small displacement transient structural dynamic 
problem the solution techniques of which has been 
perfectly described in the early 1980s by numerous 
researchers and implemented today in practically all the 
FEM software available on the market.  

However, the practical application of FEM or BIEM is 
not always easy and efficient. As a rule, FEM requires 
highly refined meshes for proper representation of the 
strain and displacement field taking place in a body the 
dimensions of which are of considerably larger size than 
the length of the elastic wave propagating in a body. In this 
way even simple academic problems often require huge 
amounts of computational resource and for many practical 
applications the real price of finite element modeling is 
prohibitive. BIEM does not have such restrictions on 
element meshes but the computational time required is 
huge. 

This work deals with the FEM approach by 
developing the mass matrix modification method already 
introduced in [5] trying to find ways for efficient 
numerical simulation of the above mentioned problems in 
2D case. The efficiency of the method is understood as its 
speed and accuracy by using moderate computational 
resources. Solid body is considered as a body the material 
properties of which (Young’s modulus, density, Poison’s 
ratio) are close to metals. The wavelength of interest is 
defined basing on the ratio of the wavelength to 
dimensions of the body and might vary from the length 
comparable to the size of the body to the wavelength 
making only 1/1000 part of the body size. 

Investigation 
It was demonstrated by the authors [5] that the mass 

matrix modification techniques provide reasonable 
accuracy when modeling short wave propagation in rough 
meshes, e.g., including only 5 finite elements per wave 
length. The essence of the method is based on the dynamic 
reduction principles in order to find optimum mass 
distribution law between the nodes of an element.. The 
mass matrices are modified, involving the transformation 
of equations of a finite element into modal coordinates and 
changing the weighting factors of the modal contributions 
to the total response. 

Consider the dynamic equation of a finite element with 
damping neglected as 

[ ]{ } [ ]{ } { }FUKUM =+&& ; (1) 
where [ ]M , [ ]K  are the mass and stiffness matrices, { }U , 

{ }F - displacement and external load vectors.  
Equation (1) can be transformed into modal 

coordinates by obtaining the eigenfrequencies and 
eigenforms of the element from the equation  

[ ] [ ] 0det 2 =− MK ω ;  (2) 

Equation (1) presented in modal coordinates reads as 
[ ]{ } { } [ ] { }FYZdiagZI T=+ )2(ω&& ; (3) 

where { }Z - vector of the generalized displacements of the 

element related to the displacement vector { }U as 

{ } [ ]{ }U Y Z= , [ ]Y - matrix of normalized eigenvectors 

satisfying the relation [ ] [ ][ ] [ ]Y M Y IT = . 
Now we truncate the dynamic contributions or change 

of weighting factors defining the extent of participation of 
selected modal contributions to the total response of the 
element.  

The matrix multipliers are defined as 
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where n is the number of degrees of freedom of the finite 
element, ci - coefficient located in the position 
corresponding to the mode number which weighting factor 
is to be changed for obtaining the modified mass matrix. 

To return to the original displacements the summation 
is carried out : 
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[ ][ ] [ ][ ]( ){ } [ ][ ][ ]{ }FYYMUMYdiagYM TT =+ )( 2ω ; (5) 
First term in the equation (5) corresponds to the 

modified mass matrix, second - to the stiffness matrix of a 
finite element. The global stiffness and mass matrices of 
the structure now can be assembled from the obtained 
element matrices as usual. 

The coefficients of the matrix multipliers should be 
chosen with care in order to ensure the total mass of finite 
element unchanged. 

Following examples illustrate the mass matrix 
modification techniques applied to the elastic triangular 
simplex finite element. The steel quadrilateral plate has 
been set as an object under investigation. The dimensions 
of the plate are were set basing on the wavelength of the 2 
MHz frequency (λ=3 mm) and are of 1.5 wavelength in 
length and 3 wavelengths in width. The plate was meshed 
by 200 right-angled triangle finite elements (Fig 1). The 
action of the piezoelectric transducer is presented lumped 
forces. 

Each triangle simplex finite element has 6 degrees of 
freedom, thus the dynamic equations in modal coordinates 
are of sixth order. Consequently, here we have more space 
for selecting weighting factors for modal contributions to 
the total response of the element. However, such a 
treatment of the problem is more complicated as it was in 
uni-dimensional considered in [5]. It appears as reasonable 
to deal only with two groups of modes. First group 
includes first 3 rigid body modes of an element, and the 
second group the remaining 3 deformation modes. If we 
would consider the random change of weighting factors 
without the separation into the above mentioned groups of 
modes, the clear physical interpretation is hard to find. 
Moreover, it was obtained that the rigid body modes 
control the total mass of the finite element. Thus the values 
of the coefficients c1, c2 and c3 should be set to unity.  

The modified mass matrix analysis has been carried 
out in order to determine the contribution of the 
deformation modes. Two types of the modified mass 

matrix were calculated by using two sets of coefficients : 
coefficient set N.1 {1,1,1,0,0,0} 
coefficient set N.2 {0,0,0,1,1,1} 
The modified mass matrices with the contribution of 

the rigid body modes (coefficient set N.1) and of the 
deformation modes (coefficient set N.2) are presented as 
follows: 
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The sum of the matrices [Ml] and [Mh] provides the 

well known finite element consistent mass matrix as 
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The contents of matrix [ ]Ml  containing the highest 

values in its main diagonal are close to the contents of the 
lumped mass matrix. In matrix [ ]M l the sum of elements 
in rows and columns always equals unity. The sum of the 
elements in rows and columns of matrix [ ]Mh  always 
equals zero. Consequently, the coefficients in set N.2 
could be set to any number as the total mass provided by 

[ ]Mh  is of zero value 

Various sets of coefficients were used in order to find 
the optimum set to simulate the short length wave 
propagation in the rough finite element mesh containing 5 
finite elements per wavelength. Fig. 2 represents the exact 
solution when 25 finite elements per wavelength were 
used. 

In Fig.3 the results for the coefficient set (1,1,1,1,1,1) 
and consistent mass matrix containing 5 FE per 
wavelength are presented. 

The wave pulse tends to move unsymmetrically 
leaning to the left. This deformation of the shape of the 
wave is a consequence of the right-angled triangle mesh 
applied to the structure. Under the application of such a 

 

Fig.1. The finite element model. 
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mesh the resulting stiffness of the plate differs slightly in 
two perpendicular directions.  

 

 
a 

 
b 

Fig.2. Landscape (a) and contour (b) plot of the wave pulse for 
consistent mass matrix; 25 FE per wavelength. 

 
a 

 
b 

Fig.3. Landscape (a) and contour (b) plot of the wave pulse for 
consistent mass matrix; 5 FE per wavelength. 

a 

a 

b 
b 

Fig.4. Landscape (a) and contour (b) plot of the wave pulse by using 
modified mass matrices; 5 FE per wavelength; coefficient set 
(1,1,1,10,10,10) . 

 
a 

 
b 

Fig.5. Landscape (a) and contour (b) plot of the wave pulse by using 
modified mass matrices; 5 FE per wavelength; coefficient set 
(1,1,1,50,50,50) . 
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The wave pulse may be corrected by increasing the 
weighting factors of deformation mode contributions. The 
set of coefficients (1,1,1,10,10,10) provides more 
reasonable results (Fig.4), however the slope of the wave 
front becomes less steep: 

By increasing the weighting factors of the deformation 
mode contributions, the front of the wave pulse is being 

distorted and the wave moves faster (Fig.5) : 
The form of the wave pulse may be controlled in 

numerous ways by distributing the weighting factors 
among the deformation modes in different ways the. Fig. 6 
represents the contour plot of the wave leaning to the left 
(coefficient set (1,1,1,10,1,1)), and Fig.7 - the hastening 
wave (coefficient set (1,1,1,1,10,10)). 

To our opinion, making experiments in such a way can 
provide the optimal coefficient set.  

Concluding remarks 
In 1D case when structure is meshed by uniform finite 

elements the amount of computations in preparation stage 
can be saved, because the modal analysis for a single 1D 
element can be carried out analytically. In 2D case the 
eigenfrequencies and eigenforms should be obtained 
numerically for each individual element. Consequently, the 
considerable savings of computational resource can not be 
expected in 2D case. Despite of this the advantage of 
modified mass matrix method in 2D case is obtained 
because of the decrease of the finite element number that is 
expressed to greater extent in comparison with the 1D 
case. E.g. the finite element number decreases up to 25 
times in 2D case to 5 times in 1D case. More precise 
results in modified mass matrix method should be obtained 
when using the uniform meshes of equilateral triangles.  
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R. Barauskas, V. Daniulaitis 

Ultragarsinių bangų sklidimo kietuose kūnuose modeliavimo metodai  

Reziumė 

Darbe nagrinėjami standžiame kūne sklindančių bangų, kurių ilgis 
gerokai mažesnis už kūno matmenis, kompiuterinio modeliavimo 
metodai. Tradicinis baigtinių elementų metodas tinka banginiams 
procesams tirti, jeigu bangos ilgis yra tos pačios eilės kaip ir konstrukcijos 
matmenys. Trumpėjant bangai, sprendinys vis labiau iškraipomas, 
kadangi diskretinis modelis nepakankamai tiksliai aprašo aukštąsias 
virpesių harmonikas. Darbe toliau plėtojamas ankstesniame darbe 
pasiūlytas baigtinio elemento masių matricos modifikavimo metodas 
trumposioms bangoms tirti. 
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Fig.6. Landscape (a) and contour (b) plot of the wave pulse; modified 
mass matrix; 5 FE per wavelength; coefficient set (1,1,1,10,1,1). 
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Fig.7. Landscape (a) and contour (b) plot of the wave pulse; modified 
mass matrix; 5 FE per wavelength; coefficient set 
(1,1,1,1,10,10) . 


